Printed	d Pag	e:-05	Subject Coo	de:-	BA	S04	02					
NO	IDA I	INSTITUTE OF ENGINEERING AN (An Autonomous Institute Affil B.Tech (ECE-Worki SEM: II - THEORY EXAM Subject: Engineering	liated to AK ing Profession INATION (TU ona 202	, Lu l) 4 - 2	ckno	ow)		ER N	1OIE	DA	
Time	e: 3 H		Manicinan	CS I	v			N	Лах.	. Mai	rks:	100
		tructions:										
		that you have received the question p	-									
	_	stion paper comprises of three Section	s -A, B, & C	C. It	con	sists	of	Mu	ltipl	le Ch	ioic	e
		MCQ's) & Subjective type questions. n marks for each question are indicate	d on right	han	d sie	la of	c oa	ch d	21100	tion		
		your answers with neat sketches when	_			ie oj	eu	cn ç	jues	uon.		
		uitable data if necessary.		J.								
5. Prej	ferab	ly, write the answers in sequential ord	er.									
		should be left blank. Any written mate	rial after a l	blan	ık sh	ieet	will	l no	t be			
evalua	itea/c.	hecked.										
SECT	ION.	-A										20
		all parts:-										20
1. Auc 1-a.	-	he mode of series 0,1,6,7,2,3,7,6,6,2,6	0.5.6.0.(CC	\1 k	71							1
1-a.			,0,3,0,0 (CC)1,E	(1)							1
	(a)	5		1								
	(b)	0										
	(c) (d)	None of these										
1 h	, ,		move cove the	+ +h	oro i	.						1
1-b.	11	a correlation analysis, if r=0 then we between variab			ere	18						1
	(a)	No correlation	(,	-,								
	(b)	Linear correlation										
	(c)	Perfect correlation										
	(d)	None of these										
1-c.	` ′	Thich of the following distributions is	used to com	pare	e two	o va	riar	ices	s? (C	CO2,	K 1)	1
	(a)	F – Test							`	ŕ	,	
	(b)	T – Test										
	(c)	Normal Distribution										
	(d)	Poisson Distribution										
1-d.	Sa	Thile testing the significance of different ample, then the degree of freedom is:		sam	ple 1	meaı	ns i	n ca	ase o	of sm	nall	1
	(a)	$n_1 - 1$										

	(b) (c)	$ \begin{array}{c} $	
	(d)	$n_1 n_2 - 2$	
1-e.	Vä	the diameter, say X of an electric cable, is assumed to be a continuous random ariable with p.d.f: $f(x) = 6x(1-x)$, $0 < x < 1$. The value of k if $(X < k) = P(X > k)$ is $(CO3, K3)$	1
		$1+\sqrt{3}$	
	(a)		
		$1-\sqrt{3}$	
	(b)		
		$1\pm\sqrt{3}$	
	(c)		
	(d)	1/2	
1-f.		random variable X has the following probability distribution:	1
	V	alue of X, x: 0 1 2 3 4 5 6 7 8	
	D	P(x): a 3a 5a 7a 9a 11a 13a 15a 17a etermine the value of a Is (CO3,K2)	
	(a)	1/81	
	(a) (b)	2/81	
	(c)	5-81	
	(d)	1	
1-g.	` ,	or Binomial distribution sum of mean and variance is 6 and difference of mean	1
± 5·		nd variance is 2 then the find the probability of success.(CO4,K3)	1
	(a)	1	
	(b)	0.5	
	(c)	0.25	
	(d)	0.75	
1-h.	F	or a Poisson Distribution, if $mean(m) = 1$, then $P(1)$ is? (CO4,K1)	1
	(a)	1/e	
	(b)	e	
	(c)	e/2	
	(d)	Indeterminate	
1-i.		can do a piece of work in 10 days while Y can do it in 15 days. In how many ays can X and Y working together do it?(CO5,K3)	1
	(a)	6 Days	
	(b)	8 Days	
	(c)	25 Days	
	(d)	12.5 Days	
1-j.	12	2 buckets of water fill a tank when the capacity of each bucket is 13.5 litres. How	1

	many by 9 litres?			needed	to fill th	e same	tank, if	the cap	acity of	each bu	icket is
(a)) 8	•	·								
(b) 15										
(c)) 16										
(d) 18										
2. Attemp	t all par	ts:-									
2.a.	Write d	own the	e norma	l equati	on of th	ie curve	y = a +	bx (CC	01,K1)		
2.b.	Write th	ne Cont	rol Lim	its (UC	L & LC	L) for C	C chart.	(CO2,K	(1))		
2.c.	A rando	om vari	able X l	nas the f	followir	ng distri	bution (CO3,K	1)		
	X	1		2	3		4	5	5	6	
	P(X)	k		3k	51	k	7k	Ş)k	11k	
	Find k.										
2.d.	Write n	nean an	d varian	ice of b	inomial	distribu	ition. (C	CO4,K1))		
2.e.	A train will pas		_		_	n a spee	d of 20	km/hr.]	Find the	e time th	nat it
SECTIO	<u>N-B</u>										3
3. Answer	r any <u>fiv</u>	<u>e</u> of the	e follow	ing:-					- 6		
3-a.	Obtain	the Kar	l Pearso	on coeff	icient o	f Skewn	ness for	the follo	owing d	ata- (C	O1,K3)
		X	10	1	1	12	A	13	14		15
		У	2	2	1	10) >	8	5		1
3-b.	By the idata:(Co			square	s, fit the	e curve	y = ax +	$-b x^2 to$	the foll	owing	1
	X	1		2		3		4		5	
	У	1	1.8	5.	1	8.9		14.1		19.8	
3-c.	The average people of 220 with Test whethe local	of a city h S.D. onether the	y. For an of Rs 12 nere is a	nother s 2. The S ny sign	ample of interest of the ample	of 150 poncome of difference	ersons, of the pe	the aver cople of een the	rage inc the city average	ome way was R	s Rs s 11. es of
3-d.	The following from 10 the mean your records.	sample \overline{X} - C	es each hart. Al	of size so exan	5. The conine wh	central li	imit for	length i	is 200 c	m. Con	struct
	Sample No.	1	2	3	4	5	6	7	8	9	10

Mean

(\overline{X})										
Range (R)	5	0	7	3	3	7	2	8	5	6

Given that : n=5, $A_2=0.58$.

3.e. If X and Y are two random variables having the joint probability mass function

$$p(x,y) = \frac{1}{27} (2x + y);$$
 $x = 0,1,2$; $y = 0,1,2$

Find the Marginal 1 distribution for X and Y. (CO3, K3)

- 3.f. Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls (ii) at least one boy (iii) no girl. (CO4,K3)
- 3.g. Two pipes X and Y fill a tank in 15 hrs. and 20 hrs. respectively, while a third pipe 'Z' can empty the full tank in 25 hrs. All the three pipes are opened in the beginning. After 10 hrs. Z is closed. In how much time, will the tank be full? (CO5,K3)

SECTION-C 50

- 4. Answer any one of the following:-
- 4-a. calculate first four central moments (CO1,K3)

Marks	5-15	15-25	25-35	35-45	45-55	55-65
No. of students	10	20	25	20	15	10

4-b. In a partially destroyed laboratory record of analysis of a correlation data, the following results only are legible:(CO1,K3)

Variance of x=9. Regression equations: 8x-10y+66=0, 40x-18y=214 Calculate (a) the mean values of x and y (b) the standard deviation of y and the coefficient correlation between x and y.

- 5. Answer any one of the following:-
- 5-a. A manufacturing company purchased three new machines of different makes and wishes to determine whether one of them is faster than the others in producing a certain output. Five hourly production figures are observed at random from each machine and results are given below:(CO2,K3)

	`		
Observations	A	В	C
1	25	31	24
2	30	39	30
3	36	38	28
4	38	42	25
5	31	35	28

Use ANOVA and determine whether the machines are significantly different in their mean speed. Given that the tabular value of F for d.f. 2 and 12 is 3.89 at 5% LOS.

5-b. The theory predicts that proportions of beans in the four groups G₁, G₂, G₃, G₄ should be in the ratio 9:3:3:1. In an experiment with 1600 beans the numbers in the four groups were 882, 313, 287 and 118. Does the experimental results

10

6

6

6

10

10

support the theory? (Tabular value at 5 % level of significance and d.f. 3 is 7.815)(CO2,K3)

- 6. Answer any one of the following:-
- 6-a. The joint probability density function of two-dimensional random variable (X,Y) 10 is given by- (CO3,K3)

$$f(x.y) = \begin{cases} 2 & 0 \le x < 1, \ 0 < y < x \\ 0 & \text{elsewhere} \end{cases}$$

- I. Find marginal density function of X and Y
- II. Find the conditional density function of Y given X=x and conditional distribution of X given Y=y.
- 6-b. A random variable has the following probability mass function: (CO3,K3)

X	0	1	2
p(x)	$3c^3$	$4c-10c^2$	5c-1

10

10

- i. Find c
- ii. Evaluate $P(X \le 2)$ and $P(1 \le X \le 2)$.
- iii. If $P(X \le a) < \frac{1}{2}$ find the maximum value of a
- 7. Answer any <u>one</u> of the following:-
- 7-a. The income of a group of 10,000 persons was found to be normally distributed with mean rs 750 p.m. and standard deviation of rs 50. show that of this group, about 95 % had income exceeding rs 668 and only 5 % had income exceeding rs 832. Given that value of z for 1.64 is 0.4495.(CO4,K3)
- 7-b. Fit a Poisson distribution to the set of observations: (CO4,K3)

				(
X	0	1	2	3	4
f	122	60	15	2	1

- 8. Answer any one of the following:-
- 8-a. (i) A can do a work in 4 days, B in 5 days and C in 10 days. Find the time taken by A, B and C to do the work together?
 - (ii) If Roger can do a piece of work in 8 days and Antony can complete the same work in 5 days, in how many days will both of them together complete it? (CO5, K3)
- 8-b. (i) Bucket P has thrice the capacity as bucket Q. It takes 60 turns for bucket P to fill the empty drum. How many turns will it take for both the buckets P and Q, having each turn together to fill the empty drum?
 - (ii) Two pipes A and B can fill a tank in 15 hours and 20 hours respectively while a third pipe C can empty the full tank in 25 hours. All the three pipes are opened in the beginning. After 10 hours, C is closed. In how much time will the tank be full? (CO5,K3)